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§1 Background

In recent ten years, there have been many papers on the parameter estimation

of stochastic heat equations.

Our interest: the technique based on variations

Stochastic analysis, Limit theorems

Some results:

[1] M. Bibinger and M. Trabs, On central limit theorems for power variations of the solution to the stochastic

heat equation, Stochastic models, Springer Proc. Math. Stat. 294, 69-84 (2019).

[2] C. Chong, High-frequency analysis of parabolic stochastic PDEs, Ann. Statist. 48 (2020), 1143-1167.

[3] C. Chong and R-C. Dalang, Power variations in fractional sobolev spaces for a class of parabolic

stochastic PDEs, Bernoulli, 29 (2023), 1792-1820.

[4] C. Chong, High-frequency analysis of parabolic stochastic PDEs with multiplicative noise: Part I, preprint

(2022).
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§1 Background

z J. Pospisil and R. Tribe (SAA, 2007) considered parameter estimation and exact

variations of the equation

∂

∂t
u(t, x) = ∆u(t, x) + θσ(u)Ẇ (t, x), t ≥ 0, x ∈ R

with u(0, x) = ϕ(x), where Ẇ is a white noise, σ is a Lipschitz function and

θ > 0 is a parameter. They showed

V4(ux; [s, t]) := lim
n→∞

n∑
j=1

(u(tj , x)− u(tj−1, x))4 =
3θ

π

∫ t

s
σ(u(r, x))4dr

with 0 ≤ s < t and tj − tj−1 = t−s
n

, and

V2(ut; [a, b]) := lim
n→∞

n∑
j=1

(u(t, xj)− u(t, xj−1))2 =
θ

2

∫ b

a
σ(u(t, y))2dy

with a < b and xj − xj−1 = b−a
n

in probability. As applications, they

introduced the estimators of θ and showed the weak consistency. However, they

did not establish the asymptotic normality.

[5] J. Pospisil and R. Tribe, Parameter estimation and exact variations for stochastic heat equations driven

by space-time white noise, Stoch. Anal. Appl. 4 (2007), 830-856.
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§1 Background

z I. Cialenco and Y. Huang (SD, 2020) considered parameter estimation on the

SPDE
∂

∂t
u(t, x) = θ∆u(t, x)dt+ σẆ (t, x), t ≥ 0, x ∈ R

with u(0, x) = 0, where σ, θ > 0 are two parameters. On a finite sampling

interval, they introduced the estimators of θ and σ2 and their the asymptotic

behavior of the estimators.

Time sampling at a fixed space point x:

θ̂n,x :=
3(d− c)σ4

π
∑n
j=1 (u(tj , x)− u(tj−1, x))4

and

σ̂2
n,x :=

√√√√ θπ

3(d− c)

n∑
j=1

(u(tj , x)− u(tj−1, x))4,

where tj = c+ j
n

(d− c), j = 0, 1, 2, . . . , n with [c, d] ⊂ [0,∞).

[6] I. Cialenco and Y. Huang, A note on parameter estimation for discretely sampled SPDEs, Stochastics and

Dynamics, 20 (2020), No. 3, 2050016.
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§1 Background

For the above estimators, they obtained the following asymptotic normalities:

√
n
(
θ̂n,x − θ

)
−→ N

(
0,

1

9
θ2C2

)
and

√
n
(
σ̂2
n,x − σ2

)
−→ N

(
0,

1

36
σ4C2

)
in distribution, as n tends to infinity.

Space sampling at a fixed time instance t:

θm,t :=
(b− a)σ2

2
∑m
j=1 (u(t, xj)− u(t, xj−1))2

and

σ2
m,t :=

√√√√ 2θ

b− a

m∑
j=1

(u(t, xj)− u(t, xj−1))2,

where xj = a+ j
m

(b− a), j = 0, 1, 2, . . . ,m with [a, b] ⊂ R.
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§1 Background

Space-time sampling and joint estimation of θ and σ:

θ̃n,m :=
π(b− a)2V 4

n (ux; [c, d])

12(d− c)2(V 2
m(ut; [a, b]))2

−→ θ

and

σ̃2
n,m :=

π(b− a)V 4
n (ux; [c, d])

6(d− c)V 2
m(ut; [a, b])

−→ σ2

in probability, as n,m→∞.
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§1 Background

z I. Cialenco and H. Kim (SPA. 2022), authors considered the equation:

∂u

∂t
= θ∆u(t, x) + σẆ (x), t ≥ 0, , x ∈ G

with u(0, x) = 0. They introduced the estimators

θ̃2
n :=

σ2(b− a)
n∑
i=1

(ux(t, xi)− ux(t, xi−1))2

and

σ̃2
n :=

θ2
n∑
i=1

(ux(t, xi)− ux(t, xi−1))2

b− a

[7] I. Cialenco and H. Kim, Parameter estimation for discretely sampled stochastic heat equation driven by

space-only noise, Stochastic Processes Appl. 143 (2022), 1-30.
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§1 Background

F. Hildebrandt and M. Trabs, Parameter estimation for SPDEs based on discrete observations in time and

space, Electron. J. Stat. 15 (2021), 2716-2776.

J. Janák, Parameter estimation for stochastic wave equation based on observation window, Acta. Appl.

Math. 172 (2021), Paper No. 2, 38p.

Y. Kaino and M. Uchida, Parametric estimation for a parabolic linear SPDE model based on discrete

observations, J. Statist. Plann. Inference, 211 (2021), 190-220.

I. Cialenco, F. Delgado-Vences and H. Kim, Drift estimation for discretely sampled SPDEs, Stoch PDE:

Anal. Comp. 8 (2020), 895-920.

G. Pasemann and W. Stannat, Drift estimation for stochastic reaction-diffusion systems, Electronic Journal

of Statistics, 14 (2020), 547-579.

J. Janák, Parameter Estimation for Stochastic Partial Differential Equations of Second Order, Appl. Math.

Optim. 82 (2020), 353-397.

Sergey V. Lototsky and Boris L. Rozovsky, Stochastic Partial Differential Equations, Springer 2017.

I. Cialenco and L. Xu, A note on error estimation for hypothesis testing problems for some linear SPDEs,

Stoch PDE: Anal. Comp. 2 (2014), 408-431.
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§1 Background

These studies basically sample and construct estimators within a finite interval,

and basically, estimators are constructed using time sampling and spatial

sampling separately.

On the other hand, Ouahhabi and Tudor (JFAA, 2013) considered the equation

∂

∂t
uH(t, x) =

∂2

∂x2
uH(t, x) + ẆH(t, x), t ≥ 0, x ∈ R,

with 1
2
< H < 1, where WH = {WH(t, x), t ≥ 0, x ∈ R} is the fractional noise.

They showed that

E
(
uH(t, x)uH(s, x)

)
=
H(2H − 1)
√

2π

∫ t

0

∫ s

0
|u− v|2H−2 dvdu√

(t+ s)− (u+ v)
,

cH |t− s|2H−
1
2 ≤ E

[(
uH(t, x)− uH(s, x)

)2
]
≤ CH |t− s|2H−

1
2 ,

They also showed that the temporal process {uH(t, ·), t ≥ 0} is ρ-local

nondeterministic and introduced existence and regularity of local time.

[8] H. Ouahhabi and Ciprian A. Tudor (2013 , Additive Functionals of the Solution to Fractional Stochastic

Heat Equation, J. Fourier Anal. Appl. 19 (2013), 777-791.
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§1 Background

z S. Torres, C-A. Tudor, F-G. Viens (EJP, 2014) considered the above equation with

WH = {WH (t, x), t ≥ 0, x ∈ R} being a fractional-colored Gaussian noise with Hurst index

H ∈ ( 1
2
, 1) in the time variable and spatial covariance function f which is the Fourier transform of a

tempered measure µ.

They introduced the central and non-central limit theorems associated with quadratic variations:

V
H
n (t, x) =

n∑
j=1


(
uH (tj , x)− uH (tj−1, x)

)2
E
(
uH (tj , x)− uH (tj−1, x)

)2 − 1

 .
As application, they introduced the estimator of H.

[9] S. Torres, C-A. Tudor and F-G. Viens, Quadratic variations for the fractional-colored stochastic heat

equation, Electron. J. Probab. 19 (2014), no. 76, 1-51.

[10] C. Tudor and Y. Xiao, Sample paths of the solution to the fractional-colored stochastic heat equation,

Stoch. Dyn. 17, No. 1 (2017), Article ID 1750004.

[11] R. Herrell, R. Song, D. Wu, and Y. Xiao, Sharp space-time regularity of the solution to stochastic heat

equation driven by fractional-colored noise, Stochastic Anal. Appl. 38 (2020), 747-768.
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tempered measure µ.
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V
H
n (t, x) =

n∑
j=1


(
uH (tj , x)− uH (tj−1, x)
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E
(
uH (tj , x)− uH (tj−1, x)

)2 − 1

 .
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§1 Background

Prompted by these results, in this talk we also consider the equation

∂

∂t
uH(t, x) =

1

2

∂2

∂x2
uH(t, x) +

√
θẆH(t, x), t ≥ 0, x ∈ R,

with uH(0, x) = 0 and 1
2
< H < 1, where θ > 0 is a parameter and

WH = {WH(t, x), t ≥ 0, x ∈ R} is the fractional noise.

Our purpose is as follows:

to establish a fractional (weighted) quadratic variation

to establish the estimator of θ basad on the quadratic variation
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§2 The fractional (weighted) quadratic variation

Clearly, we have

uH(t, x) =
√
θ

∫ t

0

∫
R
G(t− r, x− y)WH(dr, dy)

with x ∈ R and t ≥ 0, where G(t, x) = 1√
2πt

e−
x2

2t is the heat kernel.

Denote the temporal process by ux = {uH(t, x), t ≥ 0}. By H. Ouahhabi and

Ciprian A. Tudor (JFAA, 2013) we then have

[ux, ux]t =


0, H > 3

4
;

Cθt, H = 3
4

;

+∞, 1
2
< H < 3

4

for all t > 0.

Bi-fractional Brownian motion BH,K = {BH,Kt , t ≥ 0} with 0 < H < 1,

0 < K < 2 and 0 < HK < 1: a central Gaussian process with

E
[
BH,Kt BH,Ks

]
=

1

2K

(
(t2H + s2H)K − |t− s|2HK

)
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§2 The fractional (weighted) quadratic variation

Our starting point is the following definition.

Definition

Denote κ = H − 1
4

. Assume that integral

IHε (f, t, x) =
1

ε2κ

∫ t

0

{
f
(
uH (s+ ε, x)

)
− f(uH(s, x))

}{
uH(s+ ε, x)− uH(s, x)

}
ds2κ

exists for all ε > 0, t ≥ 0 and x ∈ R, where f is a Borel measurable function on R.

The limit

[f(ux), ux]
(TQ)
t := lim

ε→0
Iε(f, t, x)

is called the fractional quadratic covariation of of f(ux) and ux, provided the limit

exists in probability.

For a continuous adapted process X = {Xt, t ≥ 0}, the quadratic covariation

[f(X), X] of the process X and f(X) is defined as follows:

[f(X), X] :=
1

ε

∫ t

0

{
f(Xs+ε)− f(Xs)

}{
Xs+ε −Xs

}
ds
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§2 The fractional (weighted) quadratic variation

Remark: It also is important to note that the temporal quadratic covariation

[f(ux), ux](TQ)

can be defined as the limit in probability

lim
n→∞

n2κ−1
n∑
j=1

{
f
(
uH(tj , x)

)
− f

(
uH(tj−1, x)

)}{
uH(tj , x)− uH(tj−1, x)

}

for all t > 0 and x ∈ R, where tj = j
n
t.

In general, for a continuous adapted process X = {Xt, t ≥ 0} the quadratic

covariation [f(X), X] of the process X and f(X) is defined as follows:

[f(X), X]t = lim
n→∞

n∑
j=1

{
f(Xtj )− f(Xtj−1 )

}{
Xtj −Xtj−1

}
provided this limit exists in probability.

The QC [f(ux), ux](TQ) should be called the weighted quadratic covariation

which is a simple extension of the classical quadratic covariation.
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§2 The fractional (weighted) quadratic variation

Proposition (1)

Let 1
2
< H < 1 and let f ∈ C1(R). Then, we have

[f(ux), ux]
(TQ)
t = θKH

∫ t

0
f ′(uH(x, s))ds2κ,

for all t ≥ 0 and in particular we have

[ux, ux]
(TQ)
t = θKH t

2κ

for all t ≥ 0, where

KH =
H

2
√

2π

(
22κB(2H,

1

2
)−

1

2κ

(
22κ − 1

))
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§2 The fractional (weighted) quadratic variation

Take θ = 1 and consider the set

H = {f : measurable functions on R such that ‖f‖H <∞},

where

‖f‖H :=

√∫ T

0

∫
R
|f(x)|2e

− x2

2KHs
2κ

√
KH√

2πs1−κ
dxds.

Then, H is a Banach space with the norm ‖ · ‖H and the set E of elementary

functions of the form

f4(x) =
∑
i

fi1(xi−1,xi]
(x)

is dense in H , where {xi, 0 ≤ i ≤ l} is an finite sequence of real numbers such

that xi < xi+1.
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§2 The fractional (weighted) quadratic variation

Theorem (2)

Let 1
2
< H < 1 and f ∈ H . Then the quadratic covariation [f(ux), ux](TQ) exists

and

E
∣∣∣[f(ux), ux]

(TQ)
t

∣∣∣2 ≤ CH‖f‖2H (0.1)

for all t ≥ 0.
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§2 The fractional (weighted) quadratic variation

On the other hand, Alós et al. (2001,AOP) introduced the following Itô formula:

F (Gt) = F (0) +

∫ t

0
F ′(Gs)dGs +

1

2

∫ t

0
F ′′(Gs)dϕ(s)

for all t ∈ [0, T ] and, where G = {Gt, t ≥ 0} is a Gaussian process with some

suitable conditions, ϕ(s) = EG2
s is increasing and F ∈ C2(R) satisfying

|F (x)|, |F ′(x)|, |F ′′(x)| ≤ CeKx
2

(x ∈ R)

with K ≤ 1
4

(
sup

0≤t≤T
ϕ(t)

)−1

.

Theorem (3)

Let 1
2
≤ H < 1 and let F be an absolutely continuous function such that the

derivative F ′ ∈ H is left continuous. Then we have

F (uH(t, x) = F (0) +

∫ t

0
F ′(uH(s, x))u(ds, x) +

1

2

[
F ′(ux), ux

](TQ)

t

for all t ≥ 0 and x ∈ R.

[10] E. Alós, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab.

29 (2001), 766-801.
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§2 The fractional (weighted) quadratic variation

Moreover, by using the result obtained Ouahhabi and Tudor (JFAA, 2013), we have

known that the weighted local time

L x(t, y) = 2αKα

∫ t

0
δ(uH(s, x)− y)s2α−1ds

exists in L2 and it is continuous in (t, y).

Lemma

Given x ∈ R. Then, the integral∫
R
f4(y)L x(dy, t) :=

∑
j

fj [L x(aj , t)−L x(aj−1, t)]

exists for any f4 =
∑
j fj1(aj−1,aj ]

∈ E , and

∫
R
f∆(y)L x(dy, t) = −

[
f4(ux), ux

](TQ)

t
(0.2)

for all t ≥ 0 and x ∈ R, where L x denotes the weighted local time of ux.

[8] H. Ouahhabi and Ciprian A. Tudor, Additive Functionals of the Solution to Fractional Stochastic Heat

Equation, J. Fourier Anal. Appl. 19 (2013), 777-791.
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§2 The fractional (weighted) quadratic variation

Thanks to the denseness of E in H , we can then extend the definition of integration

with respect to y 7→ L x(y, t) to the elements of H in the following manner:∫
R
f(y)L x(dy, t) := lim

n→∞

∫
R
f4,n(y)L x(dy, t)

in L2 for f ∈ H provided f4,n → f in H , as n tends to infinity, where {f4,n} ⊂ E .

The limit does not depend on the choice of the sequences {f4,n} and it represents

the integral of f with respect to L x.
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§2 The fractional (weighted) quadratic variation

Theorem (4)

Let f ∈ H . Then the integral ∫
R
f(y)L x(dy, t)

is well-defined and the Bouleau-Yor type identity

[f(ux), ux]
(TQ)
t = −

∫
R
f(y)L x(dy, t)

holds for all t ≥ 0 and x ∈ R.

The above results are also true for more general Gaussian processes

G = {Gt, t ≥ 0} such that G0 = 0, E [Gt] = 0,

t 7→ E
[
G2
t

]
= ϕ(t)

is increasing, Hölder continuous and

E
[
(Gt −Gs)2

]
� ϕ(t− s)

for all t > s ≥ 0.
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§2 The fractional (weighted) quadratic variation

Some earlier studies for integration with respect to local time:

N. Bouleau and M. Yor, Sur la variation quadratique des temps locaux de certaines semimartingales, C. R.

Acad. Sci. Paris Sér. I Math. 292 (1981), 491-494.

H. Föllmer, Ph. Protter and A. N. Shiryayev, Quadratic covariation and an extension of Itô’s formula,

Bernoulli 1 (1995), 149-169.

N. Eisenbaum, Integration with respect to local time, Potent. Anal. 13 (2000), 303-328.

S. Moret and D. Nualart, Quadratic covariation and Itô’s formula for smooth nondegenerate martingales, J.

Theoret. Probab., 13 (2000), 193-224.

C. R. Feng and H. Z. Zhao, Two-parameters p, q-variation Paths and Integrations of Local Times, Potent.

Anal. 25 (2006), 165-204.

N. Eisenbaum, Local time-space stochastic calculus for Lévy processes, Stochastic Process. Appl. 116

(2006), 757-778.

C. Feng and H. Zhao, Local time rough path for Lévy processes, Elect. J. Probab. 15 (2010), 452-483.
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Theoret. Probab., 13 (2000), 193-224.

C. R. Feng and H. Z. Zhao, Two-parameters p, q-variation Paths and Integrations of Local Times, Potent.

Anal. 25 (2006), 165-204.

N. Eisenbaum, Local time-space stochastic calculus for Lévy processes, Stochastic Process. Appl. 116
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§3 Parameter estimation based on temporal quadratic variation

z Consider the equation

∂

∂t
uH(t, x) =

1

2
∆uH(t, x) +

√
θẆH(t, x), t ≥ 0, x ∈ R

with u(0, x) = 0, where θ > 0 is a unknown parameter and WH is the fractional noise

with Hurst index H ∈ ( 1
2
, 1).

z Let the temporal process be observed at some discrete time instants

{tj = jh, j = 0, 1, 2, . . . , n} with h = h(n, t)→ 0 as n tends to infinity. For all t > 0

and x ∈ R we denote

IHn (t, x) :=
n∑
j=1

{
uH (tj , x)− uH (tj−1, x)

}2
.

z Two Cases:

(I) tn = nh = t;

(II) tn = nh→∞.
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§3 Parameter estimation based on TQV: sampling in a finite interval

z Case 1: h = t
n

. Then, we have

n2κ−1IHn (t, x)
P−→ θKH t

2α

for all t > 0 and x ∈ R. In fact, we can also show that the convergence is almost sure.

Thus, we get a strongly consistent estimator of θ as follows

θ̂n =
n2H− 3

2

KH t
2H− 1

2

IHn (t, x).

z When H = 1
2

the following papers considered the estimator of θ by using

4-variation. However, when H 6= 1
2

we shall need the 2
2H− 1

2

-variation:

n∑
j=1

∣∣uH (tj , x)− uH (tj−1, x)
∣∣ 4
4H−1 .

This kind of thinking creates computational difficulties.

[5] J. Pospisil and R. Tribe, Parameter estimation and exact variations for stochastic heat equations driven

by space-time white noise, Stoch. Anal. Appl. 4 (2007), 830-856.

[6] I. Cialenco and Y. Huang, A note on parameter estimation for discretely sampled SPDEs, Stochastics and

Dynamics, 20 (2020), No. 3, 2050016.
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§3 Parameter estimation based on TQV: sampling in a finite interval

Theorem (5)

Let the above assumptions hold and θ̂n = n
2H− 3

2

KH t
2H− 1

2

IHn (t, x).

When 1
2
< H < 3

4
we have

√
n
(
θ̂n − θ

)
−→ N(0, λH)

in distribution, as n tends to infinity.

When H = 3
4

we have √
n

logn

(
θ̂n − θ

)
−→ N(0, λ)

in distribution, as n tends to infinity.

When 3
4
< H < 1 we have

n2−2H
(
θ̂n − θ

)
−→ λ′HRH

in distribution, as n tends to infinity, where RH denotes the Rosenblatt random

variable with variance 1 and self-similarity parameter H.
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§3 Parameter estimation based on TQV: sampling interval is infinite

z Case 2: h = h(n) satisfies the conditions

(C1) h ↓ 0 and tn = nh→ +∞ as n→∞;

(C2) There exists γ > 0 such that nh1+γ → 1 as n→∞.

Theorem (6)

Fix x ∈ R. Let the temporal process ux = {uH(t, x), t ≥ 0} is observed at some

discrete time instants {tj = jh, j = 0, 1, 2, . . . , n} with the conditions (C1) and (C2).

The estimator

θ̌n := KH(1)n
− 3−4H+2γ

2(1+γ) In(nh, x)

is consistent and asymptotically unbiased.

When H = 1
2

we have

KH(1) =

√
π

2
.

[11] Lv/Sun/Y., Quadratic covariations and parameter estimation of stochastic heat equation with additive

time-space white noise, submitted 2023.
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§3 Parameter estimation based on TQV: sampling interval is infinite

Theorem (7)

Given 1
2
< H < 3

4
. Let the conditions in Theorem 6 hold and let there exist α > 0

such that
lim
n→∞

nα(nh1+γ − 1) = ζ ∈ (0,∞).

(1) If α > 1
2

, then
n

1
2
(
θ̌n − θ

)
−→ N

(
0, (λ′′Hθ)

2
)

in distribution, as n tends to infinity.

(2) If α = 1
2

, then
n

1
2
(
θ̌n − θ

)
−→ N

(
νHθ, (λ

′′
Hθ)

2
)

in distribution, as n tends to infinity.

(3) If 0 < α < 1
2

, then
nα
(
θ̌n − θ

)
−→ νHθ

in L2, as n tends to infinity.

When H = 1
2

we have λ′′H =
√

2 + (2−
√

2)2 + λ with

λ =

∞∑
n=1

(√
n− 2

√
n+ 1 +

√
n+ 2

)2
,

and νH = 1
2

(1 + γ)−1ζ.
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§3 Parameter estimation based on TQV: sampling interval is infinite

Theorem (8)

Given H = 3
4

. Let the conditions in Theorem 6 hold and let there exist α > 0 such

that
lim
n→∞

nα(nh1+γ − 1) = ζ ∈ (0,∞).

(1) If α > 1
2

, then √
n

logn

(
θ̂n − θ

)
−→ N

(
0, (λ′θ)2

)
in distribution, as n tends to infinity.

(2) If α = 1
2

, then √
n

logn

(
θ̂n − θ

)
−→ N

(
νθ, (λ′θ)2

)
in distribution, as n tends to infinity.

(3) If 0 < α < 1
2

, then
nα
(
θ̂n − θ

)
−→ νθ

in L2, as n tends to infinity.
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§3 Parameter estimation based on TQV: sampling interval is infinite

Theorem (9)

Given 3
4
< H < 1. Let the conditions in Theorem 6 hold and let there exist α > 0

such that
lim
n→∞

nα(nh1+γ − 1) = ζ ∈ (0,∞).

(1) If α > 2− 2H, then
n2−2H

(
θ̂n − θ

)
−→ θδHRH

in L2, as n tends to infinity.

(2) If α = 2− 2H, then

n2−2H
(
θ̂n − θ

)
−→ θδHRH + ν′Hθ

in distribution, as n tends to infinity.

(3) If 0 < α < 2− 2H, then

nα
(
θ̂n − θ

)
−→ ν′Hθ

in L2, as n tends to infinity.
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§4 Parameter estimation based on quasi-likelihood method

From the perspective of likelihood estimation and statistics, we can also establish the

estimator of θ which is called the quasi-likelihood estimator.

z Consider the sample

ξj := uH(tj , x)− uH(tj−1, x), j = 1, 2, . . . , n

and quasi-likelihood function

f(x1, x2, . . . , xn) =
n∏
j=1

fξj (xj),

where fξj (xj) is the density function of ξj . Then, by likelihood method we get the

estimator of θ as follows:

θ̃n =
1

n

n∑
j=1

{
uH(tj , x)− uH(tj−1, x)

}2

σ2
j

=

√
2π

H(2H − 1)nh2H− 1
2

n∑
j=1

{
uH(tj , x)− uH(tj−1, x)

}2

∆j,j − 2∆j,j−1 + ∆j−1,j−1
,

where σ2
j is the variance of uH(tj , x)− uH(tj−1, x) with θ = 1 and

∆i,j =

∫ i

0

∫ j

0
|u− v|2H−2 dvdu√

i+ j − (u+ v)
.
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§3 Parameter estimation based on quasi-likelihood method

z Results:

(1) The estimator θ̃n is unbiased;

(2) If conditions (C1) and (C2) hold, the estimator θ̃n is strong consistent.

(3) By using Torres, Tudor and Viens (EJP, 2014), we can introduced the

asymptotic distribution of θ̃n for 1
2
< H < 3

4
and 3

4
< H < 1.

(4) When H = 3
4

we also establish the asymptotic distribution of θ̃n.

(5) The relationship between θ̂n and θ̃n.

[9] S. Torres, C-A. Tudor and F-G. Viens, Quadratic variations for the fractional-colored stochastic heat

equation, Electron. J. Probab. 19 (2014), no. 76, 1-51.
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